

	Centre for Staff Development & Technical Learning
Access I: Tables and Database Structure
Student Handouts
Contents
Understanding Database Relationships	2
One-to-Many Relationships	2
Procedure for Creating a One-to-Many Relationship	3
Many-to-Many Relationships	4
Procedure for Creating a Many-to-Many Relationship	6
Normalize Tables to Reduce Repetition of Data	7
A Simple Strategy to Analyze Tables	7
CampRight Database Field List	8
CampRight Database Structure	9
Data Types	10
Input Masks	11
Valid input mask characters	Error! Bookmark not defined.
Input mask examples	12
Three sections of an input mask	12
Number Field Sizes	12
Orders, OrderDetails and Products Tables	14
Orders	14
OrderDetails	14
Products	14
Suppliers Lookup Table	15

[bookmark: _Ref434590407][bookmark: _Toc522634719][bookmark: _Toc360027015]Understanding Database Relationships
[bookmark: _Toc360027007][bookmark: _Toc522634720]One-to-Many Relationships
One-to-many is the most common type of relationship. One student can be enrolled in only one college, but one college can have many students enrolled in it.
A Colleges table might look like this:
	CollegeID
	Name
	Address
	Phone

	1
	Stong
	123 Campus Walk
	34562

	2
	Vanier
	3 Vanier Lane
	99922

	3
	Calumet
	44 Arboretum Way
	02120

And a simplified Students table might look like this:
	StudentID
	FirstName
	LastName

	1
	Charlie
	Brown

	2
	Lucy
	Van Pelt

	3
	Pig Pen
	Hoover

	4
	Patty
	Peppermint

	5
	Marcy
	Follows

How can we tell which student is enrolled in which college? We already have a unique identifying number for each College—CollegeID, the primary key field of the Colleges table.
Instead of repeating all the College information for each student, let’s add one new column to the Students table, and simply record the CollegeID of the student’s college in that field.
	StudentID
	FirstName
	LastName
	CollegeID

	1
	Charlie
	Brown
	2

	2
	Lucy
	Van Pelt
	2

	3
	Pig Pen
	Hoover
	1

	4
	Patty
	Peppermint
	3

	5
	Marcy
	Follows
	1

Can you find the name of the college a student belongs to? Look at the CollegeID field in the Students table. Now go to the Colleges table and locate that ID in the CollegeID field and read over to the Name field.
The CollegeID numbers in the Students table are related to the CollegeID numbers in the Colleges table—they mean the same thing.
Schematically, the relationship between the tables is often represented like this:
[image:]
[bookmark: _Toc522634721]Procedure: One-to-Many Relationship
Once you know that a relationship needs to exist between two fields in your database, you’ll need to show Access what that relationship is so that it can pull together related data for you.
1. Determine which table is the ONE (parent) side and which table is the MANY (child) side.
2. Identify the primary key of the parent table.
3. Add a matching foreign key field to the child table.
· Data type must be compatible:
	Primary Key Data Type
	Foreign Key Data Type

	Autonumber, Number
	Number

	Text
	Text

· The field length setting must be equal.
· Give the foreign key the same field name as the parent key (recommended, but not strictly required).
4. Link the primary key and foreign key fields in the Relationships Window.
· Click and drag the parent’s primary key over the child’s foreign key.
· Verify that the Edit Relationships dialogue lists the parent table on the left and the child table on the right, and that the key fields are correctly listed.
· Enforce referential integrity on the relationship.
[bookmark: _Toc360027008][bookmark: _Toc522634722]Many-to-Many Relationships
A many-to-many relationship cannot be created directly between two tables. Instead, a third table (called a junction or join table) is used. A one-to-many relationship is created between each of the main parent tables and the junction table, which is the child in both relationships.
[image:]
The data in a junction table often consists of a simple list of the primary keys from its parent tables.
[image:]
Each Student ID and each CourseID can occur multiple times. This allows a student to be enrolled in more than one course, and a course to have more than one student enrolled in it.
· Student 1 is enrolled in three courses.
· Course 202 has two students enrolled in it.
To find out what Student 1’s name is or the title of Course 220, follow the relationship to the parent tables.
Primary Keys in Junction Tables
Whether you define a primary key in the junction table depends on the logic of your database.
In our example, we don’t want our database to allow a student to enroll in the same course more than once. That is, every combination of StudentID + CourseID must be unique, even though each one can occur more than once considered by itself.
To achieve this, the combination of StudentID + CourseID can be defined as a multiple-field primary key –taken together, they must be unique. Duplicates will be rejected.
 [image:]
· If you don’t want to allow duplicate combinations, use the foreign keys as a multiple-field primary key as in our example.
· If you do want to allow duplicate combinations, you can create a separate primary key field, or even no primary key at all (allowable if this table will only ever be used as a child in relationships).
Other Data in Junction Tables
Additional information can be stored in the junction table if it is related to the entire primary key.
A student earns a grade for each course in which she is enrolled, so we’ll add a Grades field to the StudentCourses table.

[image:]
[bookmark: _Toc522634723]Procedure: Many-to-Many Relationship
To create a many-to-many relationship in Access:
1. Determine which two tables share a many-to-many relationship.
2. Identify the primary keys of the parent tables.
3. Create a third table to act as the junction table. We recommend naming it after the two parent tables, so that its role is clear.
4. In the junction table, add two foreign key fields: one for each of the parent tables.
5. Create a one-to-many relationship between one parent table and the junction table. Enforce referential integrity on the relationship.
6. Create the relationship and enforce referential integrity for the other parent table.
7. Determine whether the combination of the two foreign keys in your junction table needs to be unique.
· If so, use the foreign key fields to create a multiple-field primary key.
· If not, add a field to serve as the primary key if you think you might need it later.

[bookmark: _Toc522634724]Normalize to Reduce Repetition of Data
Professional database analysts follow a process called normalization to ensure that the database contains the correct number of tables and that data will not be unnecessarily duplicated either within a table or across tables.
· There should be no repeating information in table records (First normal form)
If you find yourself setting up multiple fields such as "course1'', "course2" within the same table, you are violating this guideline.
· All fields in a table should directly relate to the unique entity referred to by the table's primary key (Third normal form)
If the studentID is the primary key in your table, all other fields in the table must contain information that somehow directly describes the individual student.
· Any fields stored in a table must relate to the entire primary key-not just to one part of the primary key (Second normal form)
Grades can be added to our StudentCourses table because a grade is assigned to a student for a particular course. But the course title cannot be stored here, because it describes only the course and not the student.
[bookmark: _Toc522634725]A Simple Strategy to Analyze Tables
1. Analyze each field in your table: does this field describe the primary key? If so, draw an arrow between that field and the primary key. If not, draw an arrow to the field that is described by this field.
2. When you find fields that describe a field in the table other than the primary key, you need to split the table into at least two smaller tables.
3. After splitting the table, analyze the resulting tables again and continue splitting until you are sure that each table describes one distinct topic.
In this example, the Name and Phone fields clearly describe an individual student. The equipment rented? Maybe. But the colour and size clearly refer to the equipment, not to the student! This table should be split into at least two tables: Students and Equipment.
[image:]
[bookmark: _Toc522634726]CampRight Database Field List

Customer’s Names
Billing Address
Product Names
Product Descriptions
Product Category (tent, backpack etc.)
Product Unit Prices
Order Payment Method (Cash, Cheque, Credit, Debit, etc.)
Order Date
Quantity Ordered
Product Discount
Shipped Date
Shipper Name
Shipper Telephone
[bookmark: _Toc522634727]CampRight Database Structure
[image:]
[bookmark: _Toc477529205][bookmark: _Toc477529671][bookmark: _Toc522634728]Data Types
A field name should clearly describe the content of the data being entered into each field, while the data type indicates the type and format of the data allowed into a field. For example, if you define a field’s data type as Number, you will not be able to enter text characters into that field.
This list of data types is based on Access 2016 .accdb desktop databases.
	Data Type
	Purpose

	Short Text
	Stores up to 255 alphanumeric characters such as names or titles.

	Long Text
	Paragraphs of text. Can contain up to one gigabyte of text, but Forms and Reports can only display the first 64,000 characters.

	Number
	Non-monetary numeric values that could be used in calculations—e.g., distances or quantities.

	Large Number
	Allows a much greater range for calculating very large numbers quickly than Number. Not compatible with earlier versions of Access.

	Date/Time
	Dates and times.

	Currency
	Monetary data stored with 4 decimal places of precision.

	AutoNumber
	A unique value generated by Access for each new record. Used primarily for generating primary keys values.

	Yes/No
	Logical data containing only one of two values: Yes/No, On/Off, True/False. Actually stored as zero (0) for False and negative one (-1) for True.

	OLE Object
	Linked or embedded non-Access data such as pictures or Excel spreadsheets. OLE data can be viewed directly on Forms and Reports.

	Hyperlink
	Clickable links to web pages, email addresses or files on the local system.

	Attachment
	Attached downloadable files, like email attachments. One attachment field can store many attachments per record (no practical limit).

	Calculated
	A calculated expression that uses one or more fields from the same table—e.g., a FullName created by concatenating the LastName and FirstName.

	Lookup Wizard
	Not actually a data type. Used to create lookup relationships between tables, or to create a value list for data entry.

[bookmark: _Toc522634729]Input Masks
Special Characters
Access interprets Input Mask characters according to the meanings below. Any other character will be inserted as a literal character—that is, as itself.
To use a special character as itself, precede that character with a backslash (\) or surround it with “double quotes.” For example, \A will appear as A, and “ACL” will appear as ACL.
	Character
	Description

	0
	Digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).

	9
	Digit or space (entry not required; plus and minus signs not allowed).

	#
	Digit or space (entry not required; blank positions converted to spaces, plus and minus signs allowed).

	L
	Letter (A through Z, entry required).

	?
	Letter (A through Z, entry optional).

	A
	Letter or digit (entry required).

	a
	Letter or digit (entry optional).

	&
	Any character or a space (entry required).

	C
	Any character or a space (entry optional).

	. , : ; - /
	Decimal placeholder and thousands, date, and time separators.

	<
	Converts all characters that follow to lowercase.

	>
	Converts all characters that follow to uppercase.

	!
	Causes data to be filled in from left to right, rather than from right to left. For example, in a telephone number will cause the area code to be filled in first: (123) 456-7890.

	\
	Causes the character that follows to be displayed literally.

	“ “
	Characters within double quotes will be displayed literally.

	Password
	Setting the InputMask property to the word Password creates a password entry text box. Any character typed in the text box is stored as the character but is displayed as an asterisk (*).

[bookmark: _Toc477529674][bookmark: _Toc522634731]Input mask examples
	Input mask definition
	Allowable values

	(000) 000-0000
	(206) 555-0248

	(999) 999-9999!
	(206) 555-0248
() 555-0248

	#999
	-20
2000

	>L????L?000L0
	GREENGR339M3
MAY R 452B7

	>L0L 0L0
	T2F 8M4

	00000-9999
	98115-
98115-3007

	>L<??????????????
	Maria
Pierre

	ISBN 0-&&&&&&&&&-0
	ISBN 1-55615-507-7
ISBN 0-13-964262-5

	>LL00000-0000
	DB51392-0493

[bookmark: _Toc477529675][bookmark: _Toc522634732]Three sections of an input mask
>L0L 0L0;1;#
Access will usually display an input mask with three sections separated by semicolons. The first section is mandatory while the other two are optional—if you are composing your own input mask you don’t have to include them.
	>L0L 0L0;
	Mask and formatting characters. A semicolon ; marks the end of the section.

	1;
	A code to indicate whether literal characters added by the mask should be stored as part of the raw data. 1 or blank means additional characters are not stored; a 0 (zero) stores the symbols as data.

	[bookmark: _GoBack]#
	The placeholder.

[bookmark: _Toc477529676][bookmark: _Toc522634733]When to Avoid Input Masks
Don’t use an input mask if people occasionally need to enter data that doesn’t match the mask, as input mask does not allow exceptions. And avoid using it for Date fields as input masks are not compatible with the Date Picker control.
Number Field Sizes
The field size setting for a number field determines what numbers can be stored in the field. It also determines how much space is set aside to store that number field in each record of the database. Choose the field size that is suitable for your data and uses the least space.
· Some settings—Byte, Integer, and Long Integer—can only store whole numbers, but they use less space than settings that can store decimals.
· Settings that can store decimal values—Decimal, Single, and Double—vary as to the degree of precision that they can store. The higher the degree of precision, the more space it takes to store the number.
· Avoid the Decimal field size as it is known to cause issues with sorting numbers.
	Number Field Size
	Can Store
	Space used
	Decimals

	Byte
	Whole numbers from 0 to 255.
	One byte
	0

	Integer
	Whole numbers from -32,768 to +32,767
	Two bytes
	0

	Long Integer (default)
Use for a foreign key field that is to be related to another table's AutoNumber primary key field.
	Whole numbers from
-2,147,483,648 to +2,147,483,647
	Four bytes
	0

	Single
	Values from -3.4 x 1038 to +3.4 x 1038.
	Four bytes
	7

	Double
	Values from -1.797 x 10308 to +1.797 x 10308.
	Eight bytes
	15

	Decimal
To be avoided as it causes issues in sorting numbers.
	Values from -9.999... x 1027 to +9.999... x 1027.
	12 bytes
	28

[bookmark: _Toc522634734]Orders, OrderDetails and Products Tables
[bookmark: _Toc522634735]Orders
	
Field Name
	Datatype
	Properties

	OrderID
	Autonumber
	Primary Key

	CustomerID
	Number
	

	OrderDate
	Date/Time
	

	Tax
	Number
	

	ShippedDate
	Date/Time
	

	ShipperID
	Number
	

	FreightCharges
	Currency
	

	AirMail
	Yes/No
	

[bookmark: _Toc522634736]OrderDetails
	
Field Name
	Datatype
	Properties

	OrderID
	Number
	Primary Key

	ProductID
	Number
	Primary Key

	ProductName
	Short Text
	

	UnitPrice
	Currency
	

	Quantity
	Number
	

	Discount
	Currency
	

[bookmark: _Toc522634737]Products
	Field Name
	Datatype
	Properties

	ProductID
	Autonumber
	Primary Key

	ProductName
	Short Text
	

	ProductDescription
	Long Text
	

	Category
	Short Text
	

	Supplier
	Short Text
	

	UnitPrice
	Currency
	

[bookmark: _Toc522634738]Suppliers Lookup Table
1. Create a Suppliers table with SupplierID field as an Autonumber data type and the primary key of the table.
2. Save the table as Suppliers.
	SupplierID
	SupplierName

	1
	Camping Unlimited

	2
	Lowell Alpine

	3
	Northern Exposure

	4
	Recreational Supplies

	5
	The South Face

[bookmark: bmgood][bookmark: bmdesignprocess]

Access I: Tables & Database Structure Handouts		Page 1 of 6
image3.png
StudentID CourselD
1 101
220
202
202
101
101

W NN PR

image4.png
StudentID CourselD

1 101
220
220
202
202
101
101
101

x

WRNN R R

image5.png
StudentCourses

StudentID CourselD Grades
1 101 B
1 220 A
1 202 B+
2 202 ©
2 101 B
3 101 A

image6.png
Record Equipment
Number Rented

1
1
1
1
. o : Hemes .

1

1

1

Hockey

1

1

1

1

1

StudentID Name Phone Colour Size

90

image7.png
o Products
Customers . o s L 77 produan
T Customerd A\ [FoEm et mame
Firsthame Customerld Product Description
Lasthame Paymenthethod OrderDetails Cotegory
BillingAddress. Orderbate ¥ Orderid. Supplier
city salestax Productip Unit price
State FreightCharges P
ZipCode. Shippeddate Discount
PhoneNumber | snpeno FreightCharges
ShippedDate
ShipperD
Shippers
¥ Shipperd -
Shipperiame
Tetephone

image1.png
Colleges Students

(o] 1l
Primary key CollegelD ne coTege StudentID
1

CollegeName Lastname

CollegeAddress FirstName
[o0]
CollegePh CollegelD i

PARENT CHILD

image2.png
One student enrolls One course has many

in many courses students enrolled
1 N 1
PARENT o | Junction | oo PARENT
T4 ildof both
parents
Students Courses

StudentCourses

LaStname M Tltle
FirStName m Location

EnrollLimit

aot0

CollegelD

T
[]
[T]
E=a

